3.76 \(\int \frac {\log (c (d+e x^n)^p)}{x^4} \, dx\)

Optimal. Leaf size=70 \[ -\frac {\log \left (c \left (d+e x^n\right )^p\right )}{3 x^3}-\frac {e n p x^{n-3} \, _2F_1\left (1,-\frac {3-n}{n};2-\frac {3}{n};-\frac {e x^n}{d}\right )}{3 d (3-n)} \]

[Out]

-1/3*e*n*p*x^(-3+n)*hypergeom([1, (-3+n)/n],[2-3/n],-e*x^n/d)/d/(3-n)-1/3*ln(c*(d+e*x^n)^p)/x^3

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2455, 364} \[ -\frac {\log \left (c \left (d+e x^n\right )^p\right )}{3 x^3}-\frac {e n p x^{n-3} \, _2F_1\left (1,-\frac {3-n}{n};2-\frac {3}{n};-\frac {e x^n}{d}\right )}{3 d (3-n)} \]

Antiderivative was successfully verified.

[In]

Int[Log[c*(d + e*x^n)^p]/x^4,x]

[Out]

-(e*n*p*x^(-3 + n)*Hypergeometric2F1[1, -((3 - n)/n), 2 - 3/n, -((e*x^n)/d)])/(3*d*(3 - n)) - Log[c*(d + e*x^n
)^p]/(3*x^3)

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 2455

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.)*(x_))^(m_.), x_Symbol] :> Simp[((f*x)^(m
+ 1)*(a + b*Log[c*(d + e*x^n)^p]))/(f*(m + 1)), x] - Dist[(b*e*n*p)/(f*(m + 1)), Int[(x^(n - 1)*(f*x)^(m + 1))
/(d + e*x^n), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x^4} \, dx &=-\frac {\log \left (c \left (d+e x^n\right )^p\right )}{3 x^3}+\frac {1}{3} (e n p) \int \frac {x^{-4+n}}{d+e x^n} \, dx\\ &=-\frac {e n p x^{-3+n} \, _2F_1\left (1,-\frac {3-n}{n};2-\frac {3}{n};-\frac {e x^n}{d}\right )}{3 d (3-n)}-\frac {\log \left (c \left (d+e x^n\right )^p\right )}{3 x^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 62, normalized size = 0.89 \[ \frac {\frac {e n p x^n \, _2F_1\left (1,\frac {n-3}{n};2-\frac {3}{n};-\frac {e x^n}{d}\right )}{d (n-3)}-\log \left (c \left (d+e x^n\right )^p\right )}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Log[c*(d + e*x^n)^p]/x^4,x]

[Out]

((e*n*p*x^n*Hypergeometric2F1[1, (-3 + n)/n, 2 - 3/n, -((e*x^n)/d)])/(d*(-3 + n)) - Log[c*(d + e*x^n)^p])/(3*x
^3)

________________________________________________________________________________________

fricas [F]  time = 0.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(d+e*x^n)^p)/x^4,x, algorithm="fricas")

[Out]

integral(log((e*x^n + d)^p*c)/x^4, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(d+e*x^n)^p)/x^4,x, algorithm="giac")

[Out]

integrate(log((e*x^n + d)^p*c)/x^4, x)

________________________________________________________________________________________

maple [F]  time = 1.01, size = 0, normalized size = 0.00 \[ \int \frac {\ln \left (c \left (e \,x^{n}+d \right )^{p}\right )}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(e*x^n+d)^p)/x^4,x)

[Out]

int(ln(c*(e*x^n+d)^p)/x^4,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -d n p \int \frac {1}{3 \, {\left (e x^{4} x^{n} + d x^{4}\right )}}\,{d x} - \frac {n p + 3 \, \log \left ({\left (e x^{n} + d\right )}^{p}\right ) + 3 \, \log \relax (c)}{9 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(d+e*x^n)^p)/x^4,x, algorithm="maxima")

[Out]

-d*n*p*integrate(1/3/(e*x^4*x^n + d*x^4), x) - 1/9*(n*p + 3*log((e*x^n + d)^p) + 3*log(c))/x^3

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\ln \left (c\,{\left (d+e\,x^n\right )}^p\right )}{x^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(log(c*(d + e*x^n)^p)/x^4,x)

[Out]

int(log(c*(d + e*x^n)^p)/x^4, x)

________________________________________________________________________________________

sympy [C]  time = 32.22, size = 51, normalized size = 0.73 \[ - \frac {\log {\left (c \left (d + e x^{n}\right )^{p} \right )}}{3 x^{3}} + \frac {p \Phi \left (\frac {d x^{- n} e^{i \pi }}{e}, 1, \frac {3}{n}\right ) \Gamma \left (- \frac {3}{n}\right )}{n x^{3} \Gamma \left (1 - \frac {3}{n}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(d+e*x**n)**p)/x**4,x)

[Out]

-log(c*(d + e*x**n)**p)/(3*x**3) + p*lerchphi(d*x**(-n)*exp_polar(I*pi)/e, 1, 3/n)*gamma(-3/n)/(n*x**3*gamma(1
 - 3/n))

________________________________________________________________________________________